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$10,000 Questions

• Can GAS languages do better than message passing?

• Claim : maybe, if programs are optimized
simultaneously both in terms of serial and parallel
performance.

• If not, is there any advantage?

• Claim - flexibility in choosing the best implementation
strategy.
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Motivation

• Parallel programming - cycle tune parallel,
tune serial

• Serial and parallel optimizations - disjoint
spaces

• Previous experience with GAS languages
showed performance comparable with hand
tuned MPI codes.
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Optimizations/Previous Work

• Traditionally  parallel programming done in terms of
two-sided communication.

• Previous work on parallelizing compilers and comm.
optimizations reasoned mostly in the terms of two
sided communication.

• Focus on domain decomposition, lowering
synchronization costs or finding the best schedule.

• GAS languages are based on one-sided
communication. Domain decomposition done by
programmer, optimizations done by compiler.
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Optimization Spaces

• Serial optimizations -> interested mostly in loop
optimizations:

- Unrolling

- Software pipelining CACHE

- Tiling

• Parallel optimizations:
- Communication scheduling (comm-comm ovlp,

comm/comp ovlp)

- Message vectorization

- Message coalescing and aggregation

- Inspector-executor NETWORK
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Parameters

• Architectural:

- Processor -> Cache

- Network -> L,o,g,G, contention (LogPC)

• Software interface: blocking/non blocking primitives,
explicit/implicit synchronization, scatter/gather….

• Application characteristics: memory and network
footprint
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Modern Systems

• Large memory-processor distance: 2-10/20 cycles
cache miss latency

• High bandwidth networks : 200MB/s-500M/s =>
cheaper to bring a byte over the network than a
cache miss

• Natural question: by combining serial and parallel
optimization can one trade cache misses with
network bandwidth and/or overhead?
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Goals

Given an UPC program and the optimization space
parameters, choose the combination of

parameters that minimizes the total running time.
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(What am I really talking about)
LOOPS

• g(i), h(i) - indirect access  -> unlikely to vectorize

fi Either fine grained communication or inspector-
executor

• g(I) - direct access - can be vectorized
get_bulk(local_src, src);

for(…)

   local_dest[g[i]] = local_src[g[i]];

put_bulk(put_bulk(destdest, local_, local_destdest))

for (i=0; i < N;i++)

   dest[g(i)] = f(src[h(i)]);
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Fine Grained Loops

• Fine grained loops - unrolling, software pipelining and
communication scheduling

for(…) {
   init 1; sync 1; compute 1; write back 1;
   init 2; sync 2; compute 2; write back 2;
……..

}
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Fine Grained Loops

for (…) {
  init 1;
  init2;
  sync 1;
  compute 1;
….
}

for (…) {
  init 1;
  init 2;
  init 3;
….
  sync_all;
  compute all;
}

for(…) {
  init 1; sync1;
  compute1;
  write1;
  init 2;sync 2;
  compute 2;
  write 2;
…….
}

(base)

• Problem to solve - find the best schedule of operations
 and unrolling depth  such as to minimize the total running
time
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Coarse Grained Loops

get B1;
…
for (…) {
  sync Bi;
  get Bj+1;
  compute Bi;
  sync Bi+1;
  compute Bi+1;
…..
}

(ovlp)

for(…) {
  get B1;
  get B2;
…
  sync B1;
  compute B1;
  sync B2;
  compute B2;
…..
}

(reg)

get_bulk(local_src, src);
for(…)  {
   local_dest[g[i]] =
local_src[g[i]];
}
put_bulk(dest, local_dest);

(base)

• Coarse grained loops - unrolling, software pipelining
and communication scheduling + “blocking/tiling”
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Coarse Grained Loops

• Coarse grained loops could be “tiled”. Add the
tile size as a parameter to the optimization
problem.

• Problem to solve - find the best schedule of
operations, unrolling depth  and “tile” size such
as to minimize the total running time

• Questions:
- Is the tile constant?
- Is the tile size a function of cache size and/or

network parameters?
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How to Evaluate?

• Synthetic benchmarks - fine grained messages
and large messages

• Distribution of the access stream varies: uniform,
clustered and hotspot => UPC datatypes

• Variable computation per message size - k*N, N,
K*N, N2 .

• Variable memory access pattern - strided and
linear.
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Evaluation Methodology

• Alpha/Quadrics cluster

• X86/Myrinet cluster

• All programs compiled with highest optimization
level and  aggressive inlining.

• 10 runs, report average
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Fine Grained Communication
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Fine Grained Communication

for (…) {
  init 1;
  init2;
  sync 1;
  compute 1;
….
}

for (…) {
  init 1;
  init 2;
  init 3;
….
  sync_all;
  compute all;
}

for(…) {
  init 1; sync1;
  compute1;
  write1;
  init 2;sync 2;
  compute 2;
  write 2;
…….
}

(base)

• Interested in the benefits of communication
communication overlap



Read Pipelining (uniform distribution)
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Write Pipelining (uniform distribution)
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• comm/comm overlap is
  beneficial

• loop unrolling helps,
best factor 32 < U < 64



Write Pipelining (clustered distribution)
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Read Pipelining vs.Write Pipelining (hotspot)
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  Myrinet: communication/communication overlap works, use non-
blocking primitives for fine grained messages. There’s a limit on the
number of outstanding messages (32 < L <64).



Read Pipelining (uniform distribution)
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Write Pipelining (uniform distribution)

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80 90 100

Percentage of remote accesses

T
im

e 
(s

ec
)

base

u2

u4

u8

u16

u32

u64

Alpha/Quadrics (g > os)



Write Pipelining (clustered sequence)
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Read vs. Write Pipelining (hotspot)
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On Quadrics, for fine grained messages where there the amount
of computation available for overlap is small - use blocking

primitives.
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Coarse Grained Communication
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Benchmark

• Fixed amount of computation

• Vary the message sizes.

• Vary the loop unrolling depth.

get B1;
…
for (…) {
  sync Bi;
  get Bj+1;
  compute Bi;
  sync Bi+1;
  compute Bi+1;
…..
}

(ovlp)

for(…) {
  get B1;
  get B2;
…
  sync B1;
  compute B1;
  sync B2;
  compute B2;
…..
}

(reg)

get_bulk(local_src, src);
for(…)  {
   local_dest[g[i]] =
local_src[g[i]];
}
put_bulk(dest, local_dest);

(base)



Uniform Distribution - linear computation - 1.0
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Alpha/Quadrics
Software pipelining with staggered gets is slower.



Cluster 2 - linear computation - 1.0
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Cluster 16 - linear computation - 1.0
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• Both optimizations help.

• Again knee around
  tile x unroll = cache_size

• The optimal value for
the blocking case - is it a
function of contention or
some other factor (packet
size,TLB size)



Hotspot - linear computation - 1.0
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Staggered better than back-to-back - result of contention.
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Conclusion

• Unified optimization model - serial+parallel likely to
improve performance over separate optimization stages

• Fine grained messages:
 os > g -> comm/comm overlap helps
 g > os -> comm/comm overlap might not be worth

• Coarse grained messages:
- Blocking improves the total running time by offering

better opportunities for comm/comp overlap and
reducing  pressure

- “Software pipelining”  + loop unrolling usually better
than unrolling alone
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Future Work

• Worth further investigation - trade bandwidth for
cache performance (region based allocators,
inspector executor, scatter/gather)

• Message aggregation/coalescing ?
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Other Questions

• Fact :Cache miss time same order of magnitude as G.

Question - can somehow trade cache misses for
bandwidth? (scatter/gather, inspector/executor)

• Fact: program analysis often over conservative.

Question: given some computation communication
overlap how much bandwidth can I waste without
noticing in the total running time.  (prefetch and region
based allocators)

.
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Effect of contention (cluster length)
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